
10 CROSSTALK The Journal of Defense Software Engineering February 2003

Back when the 6502 microprocessor
was competing with the 8080 micro-

processor, my college professor posed a
question to our class. Why did IBM
choose to use the Intel 8080 for its per-
sonal computer when he considered the
6502 to be a superior microprocessor?

His answer was that the IBM engi-
neers used the 8080 because they were
familiar with it. They knew how to pro-
gram it, and they had to get a product out
the door fast. So they used the product
they knew best.

Similarly, during the time the govern-
ment was under an Ada mandate, which
meant all new software development
would be Ada, I knew of a company that
presented a proposal to develop a flight
line electronic warfare tester using
Fortran. Why? Their microwave engineers
knew Fortran best.

Obviously, one common method of
choosing a programming language for a
new project is to let the engineers decide,
and go with the language they already
know. However, there can be problems
with this approach. System design should
have a team approach that considers all
life-cycle phases. This includes asking,
“Will the design engineers be around for
the maintenance phase?” “Will the choice
be made on what is best for the project,
or on what is best for the engineers?”

The project manager must ensure that
the language selection technique being
used is not pure careerism, which is mak-
ing decisions based on what is best for
someone’s career instead of on what is
best for the organization. For example,
during the era of the Ada mandate, pro-
fessional magazines were listing plenty of
job offerings for C++ programmers, but
none for Ada programmers. Although
Ada is a superior language with better
array handling facilities, stronger typing,
more readability, etc., marketable pro-
grammers were perceived to be the ones
with C++ experience. More recently, the
trend among programmers has been to
push Java as the language to handle all
projects. Have you checked the job list-
ings lately?

It would be easy to simply let market
demands decide which language to use.
Some people feel that they cannot go
wrong with the most well-known lan-
guage. Their rationale is that if it were not
the best, it would not be the most well
known. Currently, that means using
Visual C++ or C# hosted on a Microsoft
Windows operating system. For many
projects, this will do the job. However, a
popularity contest is not the best way to
make what is essentially a technical deci-
sion. A software product that works very
well in one project may not be suited for
another under different circumstances.

Quickly changing markets could leave a
project stranded with an obsolete soft-
ware base.

Another method of choosing a pro-
gramming language could be called the
Dilbert method. Under this scenario,
executives lament that they are not able to
find Ada programmers because the local
schools are not teaching Ada. Meanwhile,
their respective companies are advertising
to hire C++ programmers, but not Ada
programmers. The executives whine that
they do not have any control over their
advertising departments. So we are led to
believe that the advertising or human rela-
tions departments make the program-
ming language decisions. The Dilbert

rationale is that since the languages major
companies advertise for in trade journals
determines what students want to learn,
this then determines what colleges teach.
Since major companies rely on colleges to
put out the latest, or at least the best, tech-
nology, they advertise for what is most
popular with the colleges.

This author believes our society is cur-
rently trapped in an unhealthy cycle that is
propagating an inferior language. A way
to improve the process of deciding which
language would be best for a particular
development project should be developed
and documented.

Language Selection Process
The first step in a language selection
process is to decide what computer hard-
ware and operating system will be used.
Defining the hardware and operating sys-
tem greatly narrows the choice of avail-
able languages. If an Atari 800 were going
to be used for the brains of a robot pet,
then a compiler or assembler for that
machine would be useful. If plans call for
using RSX-11 on a program decision
package, then that environment will bind
the choice of languages.

To help in choosing an operating sys-
tem, ask the following three questions:
“Will direct access to the input/output
(I/O) ports be necessary?” “Will multi-
tasking be needed?” “What support will
be available?” If direct control of I/O
ports is needed, then an operating system
like DOS or Linux or a real-time operat-
ing system that provides this service will
be required. However, Windows will not
allow it. If multitasking is required, then
DOS drops out of consideration. If
direct access to I/O ports is not required,
then Windows can be considered. The
chosen operating system will constrict the
language choice.

Lastly, the availability of support
maintenance for an operating system also
factors into the final choice. Operating
systems themselves are large computer
programs that have bugs and will require
support. Unfortunately, operating systems
are numerous but few have good support.

Language Considerations
Dennis Ludwig

Aeronautical Systems Center

A major question asked when beginning a project is, “What programming language should I use?” This article will provide
some ideas to help make this choice. First, it will present some real-world examples of how this decision has been made in the
past, and then some decision-making parameters will be explored. It is intended that these ideas could be formalized into a
decision table that could be the basis of a decision-making process.

“The project manager
must ensure that the
language selection

technique being used is
not pure careerism,

which is making
decisions based on

what is best for
someone's career ...”

Language Considerations

February 2003 www.stsc.hill.af.mil 11

(For more information on operating sys-
tem considerations, see [1].)

The next step in the language selec-
tion process is to define or decide on a
design method. Some considerations are
to create a flow chart, top-down design,
or object-oriented design. If an object-
oriented design is required or desired,
then strictly procedural languages like
Fortran drop out of consideration. Some
languages that claim to be object oriented
are Ada 95, C++, Common Lisp, and
Smalltalk. Ada 95 and C++ can also be
used as procedural languages using flow
charts or other design tools.

The following list itemizes some
things to consider in choosing a language.
Using this list, managers could build a
decision matrix, assign weights, and arrive
at a decision that would be documented.
1. Speed. It is hard to beat assembly lan-

guage for speed, but some compiled
languages with optimized compilers
can match it. Avoid interpreted and
scripting languages if possible because
they are slower.

2. Operating System. Defining the
hardware and operating system greatly
narrows the choice of available lan-
guages.

3. Program Size. There is a difference
between programming large systems
and writing a small program to calcu-
late a mortgage amortization. For
large system programs, a large system
programming language with clean
interfacing is required. Ada would be a
good choice here.

4. Reuse and Cost. If it has already
been coded, why reinvent it? If the
need is for a small neural network, buy
a book with the code included. Then it
can be rewritten to make it faster or
more robust if needed.

5. Engineers’ Knowledge. It takes two
years to learn a language like Ada or
C++. There are two-week courses and
21-day instruction books for most lan-
guages, but it takes two years of really
working with the language to become
good. Look at what languages are
already being maintained in the organ-
ization. Some synergy could be gained
from staying with what is already
being used, considering any trade-offs
with obsolescent factors. Or ask, “Is it
time to upgrade the workers’ knowl-
edge?”

6. Required Pointers. Some languages
like early versions of Fortran, Java,
and Basic do not have pointers.
Others do, including C, C++, Delphi,
Ada, and the latest version of Fortran.

7. Other Data Structure Consider-

ations. Will enumerated types or
records (such as struct in C) be
required? Will array slicing be required
or helpful? Is string manipulation built
into the language, provided as a
library, or will it have to be coded sep-
arately?

8. Garbage Collection. The reclama-
tion of heap-allocated storage after its
usefulness in a program is called
garbage collection. Automatic garbage
collectors can be useful for some
applications, but can be damaging in
other situations because it relinquishes
control of the program. For some lan-
guages that do not have automatic
garbage collection, like C++ and Ada,
a routine could be written, if required.
If you do not need it, it does not mat-
ter. If garbage collection interferes
with what you need to do, then choose
a language that does not have it. Not
having automatic garbage collection
gives the programmer more control.

9. Reliability. This can be one category
or several such as information-hiding
capabilities, readability, or strong vs.

weak typing rules. Typing strength is a
matter of opinion. Every book the
author has on C++ claims that it is a
strongly typed language, but any lan-
guage that intrinsically converts floats
to integers has no business calling
itself strongly typed. This is another
issue to be addressed in the organiza-
tional software-engineering hand-
book.

10. Standardization. Will one company’s
compiler produce the same results as
the compiler from another company?
Will a later version of the same com-
piler work with earlier code? The last
question has been a problem with
C++ because the language has
changed rapidly over the years. Will
the language be around in 10 years or

more? Ada’s well-documented stan-
dard and the Association for
Computing Machinery (ACM) special
interest group assures its success. On
the other hand, the former lack of
standardization for C++ impeded
portability and programmer efficiency,
and even though it now has a stan-
dard, it is not being followed.
Furthermore, Microsoft C++ is not
the same as Borland C++. And while
Pascal and C are also standardized,
Java is not.

11. Compiler Tools Like Debuggers. If
a graphical user interface (GUI) is
mandated or desired, that is also con-
sidered because the compiler would
have to interface with the GUI tool. It
would take considerable research to
get honest ratings in this category. The
operating system would be a major
player in this consideration. If
Microsoft Windows were the plat-
form, Visual Basic, Visual C++, and
Ada would be major contenders. But
if Unix or Linux platforms would be
users as well, then the visual languages
would not be considered.

12. Parallel Processing. If parallel pro-
cessing is required, some languages
shine brighter than others do. The
operating system would also be a con-
sideration here. For most applications,
the decision matrix would have not
applicable here. Ada tasking features
make it a good choice for parallel pro-
cessing needs, but other languages,
such as Pascal or C++, could be
pressed to perform in this arena.

13. User Base. Be careful here. C++ is
touted as the most popular program-
ming language today, and it claims a
large user base. Because Borland C++
differs from Microsoft C++, and
almost every compiler sold has its own
brand of C++ (due to lack of stan-
dardization), the claim to a large user
base can be misleading. The backward
compatibility to C has been used as an
excuse to expand the user base, but
only very trivial programs are actually
backward compatible. The ACM has a
user group for Ada, and that assures a
viable user base for this language.
Because Ada is well standardized, the
users are truly more portable.

14. Specialized Areas. ATLAS is a stan-
dard language for automatic test
equipment. Although most modern
test stations use some form of BASIC
or C, keep in mind that there are lan-
guages developed for special purpos-
es. Forth was developed to control tel-
escopes, but has been expanded into a

“The language decision
is a fundamental design
decision that will affect

production, testing,
training, and

maintenance, so the
entire system life cycle
should be considered.”

Programming Languages

12 CROSSTALK The Journal of Defense Software Engineering February 2003

powerful, flexible language. Lisp and
Prolog are languages associated with
artificial intelligence. However, gener-
al-purpose languages are often used in
specialized areas. For example, array
slice capabilities of Ada make it a
powerful language for database opera-
tions.
With these considerations and others

that may be program-dependent, a payoff
table or decision matrix could be built to
make a decision based on program
requirements. A good process would
eliminate programmer bias and focus on
the project. It would also provide docu-
mentation that could be used to build
experience for decisions in future proj-
ects. For more information on developing
decision matrixes and using weights in
decision making, see [2, 3]. Note that in
management jargon, a decision matrix is
also known as a payoff table.

Other Considerations
To further enhance the process, the deci-
sion maker should be familiar with some
basic software engineering concepts. For
example, suppose a group inaccurately
argues that they want to use C++ instead
of Ada because they do not think infor-
mation hiding is a good idea. Information
hiding is not an Ada concept, but a soft-
ware engineering concept that is also used
by C++ in the form of file scope and
class scope. The concept is associated
with Ada because this language has con-
structs (packages) that make implement-
ing it easier. A small pamphlet explaining
this and other software-engineering con-
cepts would be useful for managers to dis-
pel misconceptions.

Unfortunately, software engineering is
not an exact science, but a field full of
opinions, contradictions, and poorly
defined words and concepts. For example,
the concept of object oriented has changed
over the years. A software-engineering
handbook would help to standardize
some of the concepts, even if the defini-
tions are just accepted in your organiza-
tion. It would have to be a handbook and
not an encyclopedia, or busy program
managers will never read it.

Another problem in language consid-
eration is knowing them all well enough
to make decisions. It is difficult to judge if
a language will meet your requirements
without knowing it. Yet no one has time
to learn the syntactic structure of all of
the available languages. For example, an
excuse to use C on a project instead of
Ada could be that “the array sizes had to
be dynamically allocated, and Ada could
not do that.” Of course, Ada could do

that, but the person did not know that.
Thus the decision would be made on
incomplete or inaccurate information.

As another example, consider that
Java does not have pointers. However,
someone who knew the language could
build a linked list using the Vector class in
java.util. Keep in mind that insertions and
deletions are less efficient (see
<www.cafeaulait.org/javafaq.html> ques-
tion 4.1). Language summaries similar to
one found at <www.cs.rochester.edu/
u/scott/pragmatics/a.html> could be
expanded and made part of the process
documentation [4].

In the future, the line between operat-
ing system and language may get blurred.
For example, Niklaus Wirth, the creator
of Pascal, along with Jurg Gutknecht have
created Oberon, which is an integrated
software environment that can run on
bare hardware or on top of a host operat-
ing system. Oberon is also the name of a
programming language. It is the author’s
understanding that the operating system
and the language were developed to oper-
ate closely together (see <www.oberon.
ethz.ch>).

Language vs. Process
Some people feel that the process and
tools are more important than the lan-
guage. A common belief is that if the
design is good, the language selection will
not matter. This author believes that the
process, tools, and design are dependent
on the language. The language decision is
a fundamental design decision that will
affect production, testing, training, and
maintenance, so the entire system life
cycle should be considered.

If the popular language today is not
around during the maintenance phase of
the system, life-cycle costs will greatly
increase. Languages that are not standard-
ized may be around, but they might be
drastically different from the original, or
even from another language going by the
same name (as is the case with C++).
Front-end costs to move to a different
language would include training and pur-
chasing tools. Back-end costs to maintain
an obsolete system would be constant
training and trying to purchase or main-
tain obsolete tools. Jovial programmers,
for instance, are hard to find. COBOL is
another example, as those who fought the
Year 2000 battle found out.

Conclusion
Operating systems are complex programs.
Compilers are complex programs.
Choosing which combination of these
complex programs best suits a need is not

an easy process, and most often, this
process is not documented. This article
provides an idea for making and docu-
menting the language decision process
using a decision matrix. The table ele-
ments presented are not intended to be
inclusive, or to even all be necessary. The
idea is to use a decision process that is
documented and able to be improved.◆

References
1. Silberschatz, Galvin. Operating Sys-

tem Concepts. 6th ed. Indianapolis,
IN: John Wiley & Sons, June 2001.

2. Babcock, Daniel L. Managing Engi-
neering and Technology. Prentice-
Hall, Inc, 1991.

3. Griffin, Ricky W. Management.
Houghton Mifflin Company, 1984.

4. Scott, Michael L. Programming
Language Pragmatics. San Francisco:
Morgan Kaufmann Publishers, 15 Jan.
2000.

Additional Reading
1. Ghezzi, Carlo, and Mehdi Jazayeri.

Programming Language Concepts.
John Wiley and Sons, 1987.

2. Friedman, Daniel P., Mitchell Wand,
and Christopher T. Haynes. Essen-
tials of Programming Languages. The
MIT Press, 2001.

3. Jones, Richard, and Rafael D. Lins.
Garbage Collection, Algorithms for
Automatic Dynamic Memory Man-
agement. John Wiley & Sons, 1996.

About the Author

Dennis Ludwig is a
computer engineer at
the Simulation and
Analysis Facility, Aero-
nautical Systems Cen-
ter at Wright-Patterson

Air Force Base, Ohio. He has worked
with software for more than 20 years.
He has a bachelor’s of science degree
in electrical engineering from
Louisiana Tech University, a master’s
of science degree in administration
from Georgia College, and a master’s
degree in engineering from Mercer
University.

ASC/HPMI
2210 5th Street Bldg. 146
Room 122B
Wright-Patterson AFB, OH 45433
Phone: (937) 255-7887
DSN: (785) 255-7887
E-mail: dennis.ludwig@wpafb.af.mil

